Strong Coapproximation in Banach Spaces

Ryszard Smarzewski

Department of Mathematics, M. Curie-Skłodowska University, 20–031 Lublin, Poland

Communicated by E. W. Cheney

Received February 3, 1986; revised December 8, 1986

1. INTRODUCTION

Let M be a nonempty proper subset of a normed linear space X. Without loss of generality we shall assume in the following that M is not a singleton. Following Papini and Singer [12], an element $m \in M$ is said to be a *best coapproximation in* M to an element $x \in X$ if

$$\|m - y\| \le \|x - y\| \tag{1.1}$$

for all y in M. The set (perhaps empty) of all such elements m is denoted by $\mathscr{R}_M(x)$. Moreover, let \mathfrak{D}_M be the set of all $x \in X$ such that $\mathscr{R}_M(x) \neq \emptyset$. Clearly, we have $\mathfrak{D}_M \supset M$. We note that this kind of "approximation" has been introduced by Franchetti and Furi [8], and that several of its properties have been established in Refs. [8, 11, 12].

Throughout this paper we shall assume that g is an increasing convex function defined on the interval $[0, \infty)$ and such that g(0) = 0. An element $m \in M$ is said to be a strong coapproximation in M to an element $x \in X$ (with respect to g) if there exists a constant c = c(x) > 0 such that the inequality

$$g(\|m - y\|) \le g(\|x - y\|) - cg(\|x - m\|)$$
(1.2)

holds for all y in M. Note that strong coapproximations with respect to g(s) = s were first studied by Papini [11]. Denote the set of all elements x in X having the strong coapproximation m in M by \mathfrak{D}_M^0 . Clearly, we have $\mathfrak{D}_M \supset \mathfrak{D}_M^0 \supset M$. A positive constant c_g is called an *absolute coapproximation* constant if $c(x) \ge c_g$ for all x in \mathfrak{D}_M^0 .

It is evident that the strong coapproximation $m \in M$ to x is the best coapproximation in M to x. In this paper we show that the converse

statement is also valid under some additional assumptions about M and X. Moreover, we compute absolute coapproximation constants for a number of classical Banach spaces X.

2. COSUNS IN BEST COAPPROXIMATION

A subset M of X is called a *cosun* if $m \in \mathscr{R}_M(x)$ implies $m \in \mathscr{R}_M(m + t(x - m))$ for every t > 0. By (1.1) we readily conclude that M is a cosun if and only if the inequalities

$$\|m - y\| \le \|[(1 - t)m + tx] - y\|, \qquad y \in M, \tag{2.1}$$

hold for all t > 0, $x \in \mathfrak{D}_M$, and $m \in \mathscr{R}_M(x)$. Note that an affine subset M = z + N of X is a cosun for any linear subspace N of X and element $z \in X$. This follows immediately from the fact that inequalities (2.1) are equivalent to the inequalities

$$||m - [(1-s)m + sy]|| \le ||x - [(1-s)m + sy]||, \quad y \in M,$$

with s = 1/t > 0 which one can obtain by setting $y = (1 - s) m + sy \in M$ into inequality (1.1). Now we show that cosuns play the same role in the theory of best coapproximation as suns in the theory of best approximation (see [2, 6, 17]). For this purpose, we define

$$\tau_g(x, y) = \tau_{g, X}(x, y) := \lim_{t \to 0+} \left[g(\|x + ty\|) - g(\|x\|) \right]/t$$
(2.2)

for any x, $y \in X$. In the particular case when $g(t) = t^p$, we shall write τ_p instead of τ_g . Similarly as in [4, Lemma 1, p. 446], one can show (see [17, Lemma 2.1]) that the right derivative $\tau_g(x, y)$ exists and

$$\tau_g(x, y) \le [g(\|x + sy\|) - g(\|x\|)]/s \le [g(\|x + ty\|) - g(\|x\|)]/t \quad (2.3)$$

for any $x, y \in X$ and $0 < s \le t$.

THEOREM 2.1. Let M be a cosun in X. Then an element $m \in M$ is a best coapproximation in M to an element $x \in X$ if and only if

$$\tau_{g}(m-y, x-m) \ge 0 \tag{2.4}$$

for all y in M.

Proof. If $m \in \mathcal{R}_{M}(x)$, then it follows from (2.1) that

$$[g(||m-y+t(x-m)||) - g(||m-y||)]/t \ge 0$$
(2.5)

for all $y \in M$ and t > 0. Hence by (2.2) we get (2.4). Conversely, if (2.4) holds then we can use (2.3) to get inequality (2.5) which is equivalent to (1.1) in the case when t = 1.

It should be noticed that this theorem coincides with Proposition 1 of Papini [11] in the case when g(s) = s. The hypothesis in Theorem 2.1 cannot be weakened in general. Indeed, if M is not a cosun then in view of (2.1), there exist a real t > 0, $x \in \mathfrak{D}_M$, and $m \in \mathscr{R}_M(x)$ such that

$$[g(||m-y+s(x-m)||)-g(||m-y||)]/s < 0$$
(2.6)

for $y \in M \setminus \{m\}$ and s = t. Hence by (2.3) we conclude that (2.6) is valid also for all $s \in (0, t)$. Therefore, letting $s \to 0+$ in (2.6), we get

 $\tau_{g}(m-y, x-m) < 0.$

This in conjunction with Theorem 2.1 gives the following characterization of cosuns.

THEOREM 2.2. A subset M of X is a cosun if and only if

$$\inf_{y \in \mathcal{M}} \tau_g(m-y, x-m) \ge 0$$

for all $x \in \mathfrak{D}_M$ and $m \in \mathscr{R}_M(x)$.

3. STRONG COAPPROXIMATION IN HARDY, LEBESGUE, SOBOLEV, AND HILBERT SPACES

Let X_p be the $L_p(S, \Sigma, \mu)$ space [4], Hardy space H^p [5], or Sobolev space $H^{k, p}(T)$ [1], where $1 , <math>(S, \Sigma, \mu)$ is a positive measure space, $k \ge 0$, and T is an open subset of \mathbb{R}^n . In [15, 17] we have proved that there exist positive constants c_p such that inequalities

$$\tau_{p}(y, x-y) \leq \|x\|^{p} - \|y\|^{p} - c_{p} \|x-y\|^{p}, \qquad 2 \leq p < \infty, \qquad (3.1)$$

and

$$\frac{\left[\frac{1}{2}(\|x\| + \|y\|)\right]^{2-p} \left[\|x\|^{p} - \|y\|^{p} - \tau_{p}(y, x-y)\right] \ge c_{p} \|x-y\|^{2},$$

$$1
(3.2)$$

are valid for all x, y in X_p . The constants c_p satisfy the estimates

$$2^{p-2} < c_p < (p-1) 2^{2-p}, \qquad p > 2, \tag{3.3}$$

and

$$2^{p-3}p(p-1) < c_p < p(p-1)/2, \quad 1 < p < 2.$$
 (3.4)

Moreover, we have $c_2 = 1$. Clearly, inequalities (3.1), (3.2) hold if we take c_p equal to the lower bounds given in (3.3), (3.4).

THEOREM 3.1. Let M be a cosun in the space X_p , $1 , and let m be a best coapproximation in M to an element <math>x \in X_p$. Then the inequality

$$\|m - y\|^{q} \le \|x - y\|^{q} - c_{p} \|x - m\|^{q}$$
(3.5)

holds for all y in M, where $q = \max(2, p)$.

Proof. The substitution of x-y for x and m-y for y into inequality (3.1) and application of Theorem 2.1 yields (3.5) in the case when $p \ge 2$. If 1 , then the same substitution into inequality (3.2) and application of Theorem 2.1 implies that

$$\left[\frac{1}{2}(\|x-y\|+\|m-y\|)\right]^{2-p}(\|x-y\|^{p}-\|m-y\|^{p}) \ge c_{p} \|x-m\|^{2}$$

for all y in M. Hence we can apply the inequality

$$t^{2} - s^{2} \ge (t^{p} - s^{p}) \left(\frac{t+s}{2}\right)^{2-p}, \quad t \ge s \ge 0, \quad 1$$

given in [17, Lemma 3.2], in order to complete the proof.

Note that Theorem 3.1 shows that if M is a cosun in the space X_p , then the best coapproximation $m \in \mathscr{R}_M(x)$ is the strong coapproximation (with respect to $g(t) = t^q$) in M to each x in $\mathfrak{D}_M = \mathfrak{D}_M^0$, and c_p is an absolute coapproximation constant. This theorem can be extended to the class of uniformly convex Banach spaces which have the modulus of convexity of power type $q \ge 2$ [9, p. 63]. We recall that a uniformly convex space X has the modulus of convexity δ_X of power type $q \ge 2$ if there exists a constant d > 0 such that

$$\delta_{X}(\varepsilon) \ge d\varepsilon^{q}, \qquad 0 < \varepsilon \le 2.$$

THEOREM 3.2. Let M be a cosun in a uniformly convex space X with the modulus of convexity of power type $q \ge 2$, and let m be a best coapproximation in M to an element $x \in X$. Then

$$\|m - y\|^{q} \le \|x - y\|^{q} - c\|x - m\|^{q}$$
(3.6)

for all y in M, where c is a positive constant dependent only on d and q.

RYSZARD SMARZEWSKI

Proof. By Corollary 2.2 and Lemma 2.1 presented in [13], we have

$$\tau_q(y, x - y) \le \|x\|^q - \|y\|^q - c \|x - y\|^q$$
(3.7)

for all x, y in X, where c is a positive constant such that

$$\delta_{L_q(X)}(\varepsilon) \ge c\varepsilon^q, \qquad 0 < \varepsilon \le 2. \tag{3.8}$$

Finally, replacing x by x - y and y by m - y in inequality (3.7), and applying Theorem 2.1 to the right-hand side, we obtain (3.6).

It should be noticed that Theorem 3.2 can be applied comparatively easily to prove Theorem 3.1 (cf. [13, 16]). Unfortunately, if $X = X_p$ then the best constant c in (3.8) is equal to

$$c = \begin{cases} 2^{-p}/p, & \text{if } p \ge 2, \\ (p-1)/8, & \text{if } 1 (3.9)$$

and so it is much smaller than the constant c_p . Moreover, by Proposition 24 of Figiel [7] it follows that Theorem 3.2 can be applied to a Banach space X, which is p-convex and s-concave with $1 [7]. In this case we have <math>q = \max(2, s)$ and

$$c = q^{-1}(\max(2, 2/(p-1)^{1/2}))^{-q}.$$

We remark that if X is an inner product space (e.g., $X = X_2$), then inequality (3.1) becomes the equality

$$\tau_2(y, x - y) = 2 \operatorname{Re}(y, x - y) = ||x||^2 - ||y||^2 - ||x - y||^2, \quad x, y \in X, \quad (3.10)$$

which can be verified directly. By inserting x := x - y and y := m - y into (3.10) and applying Theorem 2.1 we get

THEOREM 3.3. Let M be a cosun in an inner product space X, and let m be a best coapproximation in M to an element $x \in X$. Then

$$\|m - y\|^{2} \leq \|x - y\|^{2} - \|x - m\|^{2}$$
(3.11)

for all y in M.

The inequality (3.11) can be rewritten in the form

$$||x - m||^2 \le ||x - y||^2 - ||m - y||^2$$

for all y in M. This inequality means that if M is a cosun in an inner product space X then a best coapproximation m in M to an element $x \in X$ is a strongly unique best approximation in M to x in the sense of the definition introduced in [14]. Conversely, if M is a sun [6] in an inner product space X then a best approximation m in M to an element $x \in X$ is a strong coapproximation in M to x. This statement follows immediately from the following theorem which slightly generalizes Theorems 2.1 in [14] and 3.1 in [15].

THEOREM 3.4. Let m be a best approximation in a sun $M \subset X$ to an element x of an inner product space X. Then

$$||x-m||^2 \le ||x-y||^2 - ||m-y||^2$$

for all y in M.

Proof. Replace x by x - y and y by x - m in inequality (3.10) and use the Kolmogorov criterion

$$\tau_2(x-m,m-y) \ge 0, \qquad y \in M,$$

for a best approximation m in a sun M (see [2, 17]).

4. MIDPOINT COSUNS AND COSUNS

All results presented in previous sections remain valid if we suppose that the implication occurring in the definition of cosuns from Section 2 is true only for $t=\frac{1}{2}$. In order to show this, we introduce an auxiliary definition. A subset M of X is called a *midpoint cosun* if $m \in \mathcal{R}_M(x)$ implies $m \in \mathcal{R}_M((m+x)/2)$. By (1.1) it follows that M is a midpoint cosun if and only if the inequalities

$$\|m-y\| \le \left\|\frac{m+x}{2} - y\right\|, \qquad y \in M, \tag{4.1}$$

hold for all $x \in \mathfrak{D}_M$ and $m \in \mathscr{R}_M(x)$. Clearly, a cosun is a midpoint cosun. Conversely, if M is a midpoint cosun and $m \in \mathscr{R}_M(x)$ then inequality (4.1) holds for the elements x equal to $x_1 := (m + x)/2$, ..., $x_k := (m + x_{k-1})/2 = (1 - 2^{-k})m + 2^{-k}x$. Hence we have

$$\|m - y\| \le (t2^k - |t2^k - 1|) \left\| \frac{m + x_{k-1}}{2} - y \right\| \le t2^k \|x_k - y\|$$
$$- |t2^k - 1| \|m - y\| \le \|t2^k(x_k - y) - (t2^k - 1)(m - y)\|$$
$$= \|[m + t(x - m)] - y\|$$

for all $y \in M$ and $t \ge 2^{-k}$. By (1.1) it follows that $m \in \mathcal{R}_M(m + t(x - m))$ for

RYSZARD SMARZEWSKI

every $t \ge 2^{-k}$, where k = 1, 2, ... Thus M is a cosun and so the notions of cosuns and midpoint cosuns coincide.

Inequality (4.1) suggests the following new way for proving that best coapproximations are strong coapproximations.

THEOREM 4.1. Suppose that there exists a positive constant c such that the inequality

$$2g\left(\left\|\frac{u+v}{2}\right\|\right) \leq g(\|u\|) + g(\|v\|) - cg(\|u-v\|)$$
(4.2)

holds for all u, v in X. Then a best coapproximation in a cosun $M \subset X$ to an element $x \in \mathfrak{D}_M$ satisfies the inequality

$$g(||m-y||) \leq g(||x-y||) - cg(||x-m||)$$
(4.3)

for all y in M.

Proof. By (4.1) we have

$$g(||m-y||) \leq g(||((x-y)+(m-y))/2||)$$

for all y in M. Hence by (4.2) we obtain

$$g(||m-y||) \leq [g(||x-y||) + g(||m-y||) - cg(||x-m||)]/2,$$

which is equivalent to (4.3).

We remark that inequality (4.2) is known for the spaces $X = L_p$ (1); see Clarkson [3, Theorem 2] and Meir [10, Inequality (2.3)]. $In this case we have <math>g(t) = t^q$ with $q = \max(2, p)$ and

$$c = \begin{cases} 2^{1-p}, & \text{if } 2 \le p < \infty, \\ p(p-1)/4, & \text{if } 1 < p \le 2. \end{cases}$$

The same inequality holds also for the Hardy and Sobolev spaces H^p and $H^{k,p}$ (see [16]). Note that these constants c are larger than the constants c given in (3.9), but smaller than lower estimates for the constants c_p given in (3.3), (3.4). Finally, if X is a uniformly convex space having the modulus of convexity of power type $q \ge 2$, then it follows from Lemma 2.1 presented in [13] that inequality (4.2) holds for $c = d/2^{q-1}$ and $g(t) = t^q$, where the positive constant d is defined as in Theorem 3.2.

STRONG COAPPROXIMATION

References

- 1. J. BARROS-NETO, "An Introduction to the Theory of Distributions," Dekker, New York, 1973.
- 2. B. BROSOWSKI AND R. WEGMAN, Charakterisierung bester Approximationen in normierten Räumen, J. Approx. Theory 3 (1970), 369-397.
- 3. J. A. CLARKSON, Uniformly convex spaces, Trans. Amer. Math. Soc. 40 (1936), 396-414.
- 4. N. DUNFORD AND J. T. SCHWARTZ, "Linear Operators I," Interscience, New York, 1958.
- 5. W. L. DUREN, "Theory of H^p Spaces," Academic Press, New York, 1970.
- 6. N. EFIMOV AND S. STECKIN, Some properties of Chebyshev sets, *Dokl. Akad. Nauk SSSR* 118 (1958), 17-19.
- 7. T. FIGIEL, On the moduli of convexity and smoothness, Studia Math. 56 (1976), 121-151.
- C. FRANCHETTI AND M. FURI,-Some characteristic properties of real Hilbert spaces, Rev. Roumaine Math. Pures Appl. 17 (1972), 1045-1048.
- 9. J. LINDENSTRAUSS AND L. TZAFRIRI, "Classical Banach Spaces II," Springer-Verlag, New York/Berlin, 1979.
- 10. A. MEIR, On the uniform convexity of L^p spaces, Illinois J. Math. 28 (1984), 420-424.
- 11. P. L. PAPINI, Approximation and strong approximation in normed spaces via tangent functionals, J. Approx. Theory 22 (1978), 111-118.
- 12. P. L. PAPINI AND I. SINGER, Best coapproximation in normed linear spaces, *Mh. Math.* 88 (1979), 22-44.
- 13. B. PRUS AND R. SMARZEWSKI, Strongly unique best approximation and centers in uniformly convex spaces, J. Math. Anal. Appl. 121 (1987), 10-21.
- 14. R. SMARZEWSKI, Strongly unique best approximation in Banach spaces, J. Approx. Theory 47 (1986), 184–194.
- 15. R. SMARZEWSKI, Strongly unique minimization of functionals in Banach spaces with application to theory of approximation and fixed points, J. Math. Anal. Appl. 115 (1986), 155-172.
- 16. R. SMARZEWSKI, Strongly unique best approximation in Banach spaces II, J. Approx. Theory 51 (1987), 202-217.
- R. SMARZEWSKI, "Strong unicity in nonlinear approximation, Proceedings of International Conference on Rational Approximation held in Łańcut," Lecture Notes in Mathematics, No. 1237, pp. 331-350, Springer-Verlag, Berlin, 1987.