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1. INTRODUCTION

Let M be a nonempty proper subset of a normed linear space X.
Without loss of generality we shall assume in the following that M is not a
,singleton. Following Papini and Singer [12], an element mE M is said to
be a best coapproximation in M to an element x E X if

11m - yll ~ Ilx - yll (1.1 )

for all y in M. The set (perhaps empty) of all such elements m is denoted
by ~M(x). Moreover, let !lM be the set of all x E X such that ~M( x) =1= 0·
Clearly, we have !l M => M. We note that this kind of "approximation" has
been introduced by Franchetti and Furi [8], and that several of its proper­
ties have been established in Refs. [8, 11, 12].

Throughout this paper we shall assume that g is an increasing convex
function defined on the interval [0, co) and such that g(O) = O. An element
mE M is said to be a strong coapproximation in M to an element x E X
(with respect to g) if there exists a constant c=c(x»O such that the
inequality

g(llm - yll) ~g(llx - yll) - cg(llx-mll) (1.2 )

holds for all y in M. Note that strong coapproximations with respect to
g(s) = s were first studied by Papini [11]. Denote the set of all elements x
in X having the strong coapproximation m in M by !l~. Clearly, we have
!lM => !l~ => M. A positive constant cg is called an absolute coapproximation
constant if c(x)~Cg for all x in !l~,

It is evident that the strong coapproximation mE M to x is the best
coapproximation in M to x. In this paper we show that the converse
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statement is also valid under some additional assumptions about M and X.
Moreover, we compute absolute coapproximation constants for a number
of classical Banach spaces X.

2. COSUNS IN BEST COAPPROXIMATION

A subset M of X is called a cosun if mE 9lM (x) implies
mE 9lM (m + t(x - m)) for every t > O. By (1.1) we readily conclude that M
is a cosun if and only if the inequalities

11m - yll ~ II [(1- t) m + tx] - YII, yEM, (2.1 )

hold for all t > 0, X E '1) M' and m E 9lM( x). Note that an affine subset
M = z + N of X is a cosun for any linear subspace N of X and element
z E X. This follows immediately from the fact that inequalities (2.1) are
equivalent to the inequalities

11m - [( 1- s) m + sy] II ~ II x - [( 1- s) m + sy] II, yEM,

with s = lit> 0 which one can obtain by setting y = (1- s) m +sy E Minto
inequality (1.1). Now we show that cosuns play the same role in the theory
of best coapproximation as suns in the theory of best approximation (see
[2, 6, 17]). For this purpose, we define

rg(x,y)=rg,x(x,y):= lim [g(llx+tYII)-g(llxll)]lt (2.2)
t~O+

for any x, y E X. In the particular case when g( t) = tP, we shall write rP

instead ofrg . Similarly as in [4, Lemma 1, p. 446], one can show (see [17,
Lemma 2.1]) that the right derivative rg(x, y) exists and

rg(x, y) ~ [g(llx +sYII) - g(llxll )]Is ~ [g(llx+ tYII) - g(llxll)]lt (2.3)

for any x, y E X and 0 < s ~ t.

THEOREM 2.1. Let M be a cosun in X. Then an element mE M is a best
coapproximation in M to an element x E X if and only if

for all y in M.

Proof If mE9lM (x), then it follows from (2.1) that

[g(llm - y + t(x- m)ll) - g(llm - YII )]It ~O

(2.4)

(2.5)
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for all yEM and f>O. Hence by (2.2) we get (2.4). Conversely, if (2.4)
holds then we can use (2.3) to get inequality (2.5) which is equivalent to
(1.1) in the case when f = 1. I

It should be noticed that this theorem coincides with Proposition 1 of
Papini [11 J in the case when g(s) = s. The hypothesis in Theorem 2.1 can­
not be weakened in general. Indeed, if M is not a cosun then in view of
(2.1), there exist a real f > 0, X E 'D M' and m E 9lM( x) such that

[g(llm - y +s(x -m)ll) - g(llm - yll )]/s < ° (2.6)

for y E M\ {m} and s = f. Hence by (2.3) we conclude that (2.6) is valid also
for all SE(O, f). Therefore, letting s--+O+ in (2.6), we get

!g(m - y, x-m) < 0.

This in conjunction with Theorem 2.1 gives the following characterization
of cosuns.

THEOREM 2.2. A subsef M of X is a cosun if and only if

inf !g(m-y,x-m)~O
yeM

3. STRONG COAPPROXIMATION IN HARDY,

LEBESGUE, SOBOLEV, AND HILBERT SPACES

Let Xp be the Lp(S, E, J.I.) space [4J, Hardy space HP [5J, or Sobolev
space Hk,P(T) [IJ, where 1 <p < 00, (S, E, J.I.) is a positive measure space,
k ~ 0, and T is an open subset of ~n. In [15, 17J we have proved that there
exist positive constants cp such that inequalities

2~p<00, (3.1 )

and

1<p< 2,

are valid for all x, y in X p • The constants cp satisfy the estimates

p>2, (3.3 )
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2P - 3p(p-l) < Cp <p(p -1)/2, 1<p<2.
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(3.4 )

(3.5)

Moreover, we have C2 = 1. Clearly, inequalities (3.1), (3.2) hold if we take
cp equal to the lower bounds given in (3.3), (3.4).

THEOREM 3.1. Let M be a cosun in the space X p , 1 <p < 00, and let m be
a best coapproximation in M to an element x E Xp • Then the inequality

11m - yllq ~ Ilx - yllq - cpIlx- mll q

holds for all y in M, where q = max(2, p).

Proof The substitution of x - y for x and m - y for y into inequality
(3.1) and application of Theorem 2.1 yields (3.5) in the case when p ~ 2. If
1<p < 2, then the same substitution into inequality (3.2) and application
of Theorem 2.1 implies that

for all y in M. Hence we can apply the inequality

t ~ s ~ 0, 1 < P < 2,

given in [17, Lemma 3.2], in order to complete the proof. I

Note that Theorem 3.1 shows that if M is a cosun in the space Xp , then
the best coapproximation mE 9lM (x) is the strong coapproximation (with
respect to g(t) = tq

) in M to each x in Xi M = Xit, and cp is an absolute
coapproximation constant. This theorem can be extended to the class of
uniformly convex Banach spaces which have the modulus of convexity of
power type q ~ 2 [9, p. 63]. We recall that a uniformly convex space X has
the modulus of convexity bx of power type q ~ 2 if there exists a constant
d> 0 such that

0<E~2.

THEOREM 3.2. Let M be a cosun in a uniformly convex space X with the
modulus of convexity of power type q ~ 2, and let m be a best coap­
proximation in M to an element x E X. Then

(3.6)

for all y in M, where c is a positive constant dependent only on d and q.
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Proof By Corollary 2.2 and Lemma 2.1 presented in [13], we have

for all x, Y in X, where c is a positive constant such that

(3.7)

0<8:::::;2. (3.8 )

Finally, replacing x by x - Y and y by m - y in inequality (3.7), and apply­
ing Theorem 2.1 to the right-hand side, we obtain (3.6). I

It should be noticed that Theorem 3.2 can be applied comparatively
easily to prove Theorem 3.1 (cf. [13,16]). Unfortunately, if X=Xp then
the best constant c in (3.8) is equal to

{
2 -Pip,

c = (p _ 1)/8,
if p~2,

if 1<p:::::; 2,
(3.9)

and so it is much smaller than the constant cpo Moreover, by Proposition
24 of Figiel [7] it follows that Theorem 3.2 can be applied to a Banach
space X, which is p-convex and s-concave with 1<p:::::; s < 00 [7]. In this
case we have q =max(2, s) and

We remark that if X is an inner product space (e.g., X = X 2 ), then
inequality (3.1) becomes the equality

x,yeX, (3.10)

which can be verified directly. By inserting x := x - y and y:= m - y into
(3.10) and applying Theorem 2.1 we get

THEOREM 3.3. Let M be a cosun in an inner product space X, and let m
be a best coapproximation in M to an element x e X. Then

Ilm- Y112:::::; Ilx- Yl12 -llx-mI1 2

for all y in M.

The inequality (3.11) can be rewritten in the form

(3.11 )

for all y in M. This inequality means that if M is a cosun in an inner
product space X then a best coapproximation m in M to an element x e X
is a strongly unique best approximation in M to x in the sense of the
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definition introduced in [14]. Conversely, if M is a sun [6] in an inner
product space X then a best approximation m in M to an element x E X is a
strong coapproximation in M to x. This statement follows immediately
from the following theorem which slightly generalizes Theorems 2.1 in [14]
and 3.1 in [15].

THEOREM 3.4. Let m be a best approximation in a sun Me X to an
element x of an inner product space X. Then

for all y in M.

Proof Replace x by x - y and y by x - m in inequality (3.10) and use
the Kolmogorov criterion

!2(X- m, m - y) ~O, yEM,

for a best approximation m in a sun M (see [2, 17]). I

4. MIDPOINT COSUNS AND COSUNS

All results presented in previous sections remain valid if we suppose
that the implication occurring in the definition of cosuns from Section 2
is true only for t =!- In order to show this, we introduce an auxiliary defini­
tion. A subset M of X is called a midpoint cosun if mE 9lM(x) implies
mE~M((m+x)/2). By (1.1) it follows that M·is a midpoint cosun if and
only if the inequalities

yEM, (4.1 )

hold for all x E 1)M and mE 9lM (x). Clearly, a cosun is a midpoint cosun.
Conversely, if M is a midpoint cosun and mE 9lM (x) then inequality (4.1)
holds for the elements x equal to Xl := (m + x )/2, ..., Xk := (m + Xk _ 1)/2 =
(1-2- k)m+2-kx. Hence we have

Ilm- yll ~ (t2k -lt2k -11) 11

m+;k-l -y II ~ t2k Ilxk - yll

-I12k -11 11m - yll ~ Ilt2k(xk- y) - (t2k -1)(m - y)11

= II[m+t(x-m)]-yll

for all y E M and t ~ 2 -k. By (1.1) it follows that mE 9lM(m + t(x - m)) for
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every t ~ 2 -k, where k = 1, 2, .... Thus M is a cosun and so the notions of
cosuns and midpoint cosuns coincide.

Inequality (4.1) suggests the following new way for proving that best
coapproximations are strong coapproximations.

THEOREM 4.1. Suppose that there exists a positive constant c such that
the inequality

2g ( II u ; v II ) :%; g( II uII) +g( II vII ) - cg( II u - vII ) (4.2)

holds for all u, v in X. Then a best coapproximation in a cosun Me X to an
element x E !lM satisfies the inequality

g(llm - yll) :%;g( Ilx - YII) - cg( Ilx - mil)

for all Y in M.

Proof By (4.1) we have

g(Ilm - yll) :%;g(II«(x - y) + (m - y))/2/1)

for all y in M. Hence by (4.2) we obtain

g(lIm - yll):%; [g(llx - yll) +g(llm - yll) - cg(llx - mil )]/2,

which is equivalent to (4.3). I

(4.3 )

We remark that inequality (4.2) is known for the spaces X = Lp

(1 < P < (0); see Clarkson [3, Theorem 2] and Meir [10, Inequality (2.3)].
In this case we have g(t) = tq with q = max(2, p) and

if 2:%;p < 00,

if 1 <p:%; 2.

The same inequality holds also for the Hardy and Sobolev spaces HP and
Hk.P (see [16]). Note that these constants c are larger than the constants c
given in (3.9), but smaller than lower estimates for the constants cp given in
(3.3), (3.4). Finally, if Xis a uniformly convex space having the modulus of
convexity of power type q ~ 2, then it follows from Lemma 2.1 presented in
[13] that inequality (4.2) holds for c = d/2 q

- 1 and g(t) = tq
, where the

positive constant d is defined as in Theorem 3.2.
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